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Abstract 

In an extended relativistic fluid droplet, it is possible to define new internal variables 
which correspond to the classical counterpart of spin. If we introduce a new constraint, 
different from Weysenhoff's, we obtain by quantisation the Feynman-Gell-Mann wave 
equation. This also yields a theoretical connection between mass and spin which can 
be compared with the observed baryon boson mass spectrum. 

Since the very beginning of spin theory, most physicists have accepted, 
without criticism, the famous statement of  Pauli, that the spin has no 
classical counterpart and must be considered as a purely quantum mech- 
anical concept tied with quantum mechanical matrices, related with finite 
group representations. This is a very strong statement from the physical 
point of  view. Its logical origin rests, of  course, in the classical point particle 
picture which leaves no room for classical spin variables. 

The aim of the present article is to show that Pauli was wrong on this 
point. I f  one starts from a relativistic model of rotating fluid masses, one 
can find a classical model of  spin and show that the quantisation of a 
special solution of its internal motions leads to the Feynman-Gel l -Mann 
wave equation, which is equivalent to Dirac's. Of  course, such a model 
ties mass and spin together and we shall discuss this relation in connection 
with the baryon mass spectrum. The bosons correspond to a different 
internal rotational symmetry. 

This result can be obtained if we combine the relativistic model of  rotating 
fluid masses, elaborated by Bohm & Vigier (1958), with the mathematical 
analysis of  spinor variables, made by Hara  & Goto (1968), in order to study 
extended models of  elementary particles. 

As one known (Bohm & Vigier, 1958), if we introduce within the rela- 
tivistic droplet a symmetry energy-momentum density Tuv (with aVTu~ = O) 
and current densityju (with O~'j~, = 0), we can define: 

(a) a total momentum G~ = S Tuo dV = constant (with dG~/dt = 0), where 
dV represents the element of  volume in any frame 2L From this definition, 
one can take a special rest frame II  0 in which G~ = 0. 

19 



20 s. DEPAQUIT et al. 

(b) in H0, a centre-of-matter density (c.m.d.) by 

Y/~176 = f j o ~ 1 7 6  ~ (1) 
Ho 

(the superscript zero denoting all quantities which refer to the frame IIo) , 
Jo ~ = Sjo~ ~ and a four-velocity v~ = Y', = (d/dr) Y , ,  r representing the 
proper time along the world-line followed by the c.m.d. (v~ v v = -c2). 

(c) in the rest frame 2:0 of the c.m.d. (v~ = 0), a centre of mass (c.m.) 
by 

Go Xi = j Too x~ dV  (2) 
2:0 

The 4-velocity uu of the c.m. is proportional to G~, since we have (Bohm 
& Vigier, 1958) 

o .  (3) 
u. - Moc 

with 
Mo2C 2 = -Gt,  G ~' (4) 

Let us introduce the inner angular momentum of the fluid droplet with 
regard to the c.m.d, as 

M.v = f [(x. - Y.) r0v - (x~ - Y.) T.0l, dV (5) 

we can express the total angular momentum L.~ with regard to an arbitrary 
frame by 

Lu. = M.~ + Y. G~ - Y~ G. (6) 

so that its conservation (we have always L . ,  = 0) yields the final set of 
relations 

= o .  %, o. = 0 (7 )  

which would be completed by three constraints to describe the total motion 
of the c.m.d. 

Until now, in the literature (Halbwachs, 1960), the constraints have been 
Weysenhoff's: M ~  l~  = 0, or some of its generalisations and one knows 
that their quantisation does not yield the usual spin equations (Corben, 
1968). 

In this work, we now take, instead of M~/3 I ~ = 0, the new constraint 
relations 

o ~  G~ = 0 (8) 

where oJ~ represent the relativistic angular variables canonically con- 
jugated to M~,~ as the Yu are conjugated with the Gu's: the o~/3, representing 
the average angular velocity of the droplet as whole around the c.m.d. Of 
course, this model is related to Yukawa's famous bilocal structure of 
elementary particles (Yukawa, 1953). The physical meaning of the new 
condition is clear: in 13[ o the particle undergoes a purely spatial rotation. 
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The next step is to quantise this model. Let us first recall a simple method 
of quantisation, in the simple case of a spinless point particle. Introducing 
its position x u as function of the proper time r along the world-line followed, 
and the associated scalar Hamiltonian (which must be equal to -mc2), 
namely 

H = \ 2m (9) 

we have 2~ = OH/OG ~ = G~,/rn and (~u = -OH/Oxu = 0 (de Brogtie et al., 
1963). One quantises by introducing a scalar wave field q~ (x~,r), writing 
H=-ihO/O-;  =- ihO, ,  G u =-ihO~. We get the generalised Schr6dinger 
equation 

- i h  O, qb (x m r) = Hq) (xu, r) (10) 

Observed physical waves correspond to the stationary solution 

~ (x~, "r) = exp ( -  i ~ )  ~(x~,) (11) 

which satisfies the usual wave equation 

m 2 r 
DTt(X u) = ~ ~(Xu) (12) 

In our general case, we can take 

2m 2 c 2 ~ . . . . . . .  o~ 

2-~ds & + - -  (13) 

where S .  = �89 G"MO`/J = GV~I.v is the well-known definition of the spin 
in the Poincar6 group, m, m 0 and a are constants. This is the most general 
Hamiltonian (up to higher order terms), invariant under the Poincar6 
group�9 

This yields immediately 

= m ~ c  z 

�9 O H  1 et ,~,r  GO ̀ S[ 3 (14) 
i c~ OM ~ 2 

with 0 r = -OH/O Y"  = O, f/Iu~ =-OH/Oco'"  = 0, GOebu, = 0 and • = S,  = 0. 
Moreover, we have (Takabayasi, 1966): G~ G ~ Mu~ = r[uG,] + i%~oo G o S ~: 
the total angular momentum is the sum of the orbital momentum of the 
e.m. with the spin. We have also ]Yu = ?u = d[dr(Mu~G") �9 

We shall now show (in the case of  spin �89 the reasoning can be developed 
identically for any spin) that the corresponding quantisation yields the 
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Dirac-Feynman-Gell-Mann equations. Indeed, let us work in the 170 frame 
(G~ = 0) centred on the c.m., we get 

( 1  a ~  llArij r m 2 e2) H = ~mm G4 G4 + Mij + - -  2m 2 c 2 '-,4 ~,-, ,-, (15) 

The quantisation could be obtained directly by the substitution 
G4-+-iha/Ot. M u -+- iha /aoY and proceeding as before. However, in 
order to clarify the physical meaning of spinors, it is preferable to change 
variables and define the angular velocity with the help of the rotation of 
a tetrad bug tied to the c.m.d. (the body frame) with regard to a tetrad 
aug tied to the external observer (the observer frame). 

We define a general frame in Minkowski space by four, orthogonal, 
unitary vectors a S or bug (~: = 1, 2, 3, 4) satisfying the orthonormality 
conditions 

aSav G = 3~, a,Gaun = 3Gn, bJb~ G = 3uv,  bSb~,n = 3 G'~ (16) 

The time-like vectors being ia, and ibm. (We have x4 = ixo = iet) and the 
angular velocity can be written cb,v = bSbv G. If we start from a fixed 
reference frame a~, G the transition from this frame to any orientation of 
the moving frame bug is given by the expression ili cos  ,2o b~, = -s in  !+/2 

cosr  

x -s in  r  

0 0 

cos00+/2 

x sin 00+/2 

cos 0-/2 
0 

x sin 0-/2 
0 

cosr 
-s in  ~b+/2 

x 0 

i 0 

sin r 0 sin ~ 0+/2 cos r 0 
0 cos r x 
0 -s ine+/2 cosr 

0 :4f ] cos r  0 0 
0 cos r - x 
0 sin r  - 

0 -s in  0+/2 0 
cos 0+/2 0 -s in  0+/2 

0 cos 0+/2 0 x 
sin 0+/2 0 cos 0+/2 

0 -s in  0--/2 0 
cos 0-/2 0 sin 0-/2 

0 cos 0-/2 0 x 
-s in 0-/2 0 cos 0-/2 

sin ~b+/2 0 sin ~ 0+/2 cos r 0 
0 cos r x 
0 -s in ~b+/2 cos ~b+/2 
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cos ~b-/2 sin ~b-/2 0 
• -s in ~b-/2 cos ~b-/2 

o 
0 

where the angles are defined by 

r = 4,  + i4z, 
0 + = 01 + i02, 

4 ,+ = 4,, + i4, , 

0 
cos ~b-/2 
sin ~b-/2 

- s i n i - / 2  a/~ 3attza~l 

cos ~b-/2 au 4 
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(17) 

4 -  = 41 -- i4z 
O -  = 01 - -  iO 2 

4 , -  = - i 4 , 2  

(18) 

41, 01, ~bl being the ordinary space Euler angles and i42, i02, i~b2 hyperbolic 
angles describing pure Lorentz transforms (Hillion & Vigier, 1960).t 

It can easily be shown that a set of self-dual bivectors built with the 
help of the bug 

B "+ = bkrb4 4 - b4rbk 4 ~ e l j kb i rb j  4, i , j ,  k, r = 1, 2, 3 (19) 

can be obtained from the corresponding expressions in aug 

Ark +- = ak" a44 - -  a4 r ak 4 :~z ei j  k a{  aj 4 (20) 

by the transformations 

Bl+ I cos 4+ cos 0+ cos if+ -- sin 4+ sin ~b + 
B 2+ = -s in  4 + cos 0 + cos ~b + - cos 4 + sin ~b + 
B 3+ sin0+ cos~b + 

cos4 + cos0 + sin~ + + sin4 + cos~b + - c o s 4  + sin 0+11A'+ I 
-s in  4+ cos 0+ sin ~,b + + cos4+cos~b + -  sin4+sin0 + ]A 2+ (21) 

sin 0 + sin ~b + cos 0 + A 3+ 

that is exactly the usual non-relativistic expression in Euler angles, where 
complex Euler angles ~o +- = (4 +-, O+-,~b +-) have replaced real ones, the transi- 
tion from A~, + to B[, + is determined by the oJ + only, the A[,-, B~- by the 
o7 only. This means, as Einstein and Mayer have noticed (1932), that we 
can represent any Lorentz transform by two complex-conjugate three- 
dimensional rotations. The explicit form of these representations can be 
obtained by writing the infinitesimal rotation operators corresponding to 
these complex rotations. 

A short calculation (Halbwachs et al., 1959) gives for rotations around 
the bivectors A~, -+ 

sin 0 +- 
Y~+- = -s in  4+Po~ - cotg0 • c o s  4+-p4+ + c~s~+_p~ 

sin ~b + 
J2 + = cos 4+Po~ - cotg0 + sin q~-+p~ + ~ p 0 ~  

J3 +- = Pd, J: 

"~ For  clarity, we have explicitly reproduced this connection between the spinors and 
relativistic Euler angles of  the paper. 
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for rotations around the bivectors B~ ~ 

j,~ cosC 
- = sin ~b• + cot gO +- cos ~b+pr177 sin 0 + p~: 

sin~b +- 
J '~ cos~b+p0 . - cotgO + sin~b+p~ + ~ p r  

IJ'~ = p ~  

here 

0 0 0 
pot =-jh ao+, p~. =-jh ur p# =-J~_r (J= V - i )  

The difference between the two symbols i and j,  both with squares equal 
to -1 ,  has been introduced by MSller (1949), Synge (1954), and others in 
order to avoid confusion. It can be immediately noticed that the preceding 
operations which are not hermitian in the common sense of the word 
(Hillion & Vigier, 1959) satisfy the commutation relations of the three- 
dimensional rotation group 

+_ + . + t+ t+ �9 rz[: (Jk ,J j  ) = - J J , - ,  - j J ,  ( j ~ - , j j - )  = 

(i, j ,  k, is a circular permutation of 1, 2, 3). 
We also get the relations 

( A + , J T )  = O, + ' -  '+ ' -  (J~ , J j  ) = O, (J~ , J j  ) = 0 

which show that the J+ and J -  are independent. 
Introducing further the two operators 

(j+)2 = (j,+)2 and ( j - ) z  = (j,-)2 

we obtain 

(S3 +, (j+)2) = O, (J3-, (j-)2) = O, (j~+(j,+)2) = 0 

(s~-, (j,-)2) = 0, ((j+)2, (j-)2) = 0 

It is now clear that we can satisfy a Lorentz transform by the simultaneous 
eigenfunctions of three commuting operators among the preceding ones, 
namely 

J3 +, J~+, (j+)2 

The explicit form for these eigenfunctions is given by expression 

Y~'+' m ' + ( ~ o + ) =  ( ~ )  -m++m'+ (C020+)-m+-m'+ exp [j(m+$+ + m'~b+)] • 

sin 0 + 2j+-2m'+ COS 0 + 2j++2m+ 

x d(sin20+/2)J+_m, + 

= 0'~' m'+(O+) exp [j(m+r + + m'+~+)] 
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and we have shown in another paper (Hillion & Vigier, 1969) that the 
number j  § may take integer or half integer values, the corresponding values 
o f m  § and m'+ being 

- j + , - j +  - 1 . . . . .  j+ - 1,j + 

Obviously, the same results apply to angles co-. 
The products of  functions ,,+, m'+ + Y j+ (co) " - . " ' -  _ Y j-  (co) transform under the 

D ( j + , j  -)  representation of the proper Lorentz group. More precisely we 
can build functions which transform under the representation 

D(j+ ,J  -) �9 D ( j - , J  +) 

of the full Lorentz group. To do this we use the eigenfunctions of  the six 
commuting operators 

(J+)2,J3+,(J-)2,J3- , S '2, S 3' (with & '  =J~,+ + J~,-, S '2 = & ' & ' )  

These eigenfunctions are series of  linear products of the 

m+ m,+(co+) m-, Y j+. Y j -  ,. '-(co-) 

eigenfunctions multiplied by suitable Clebsch-Gordan coefficients 
Z m + , m - , m ' r  + -~  

j + , j - - , S "  ~(.I) ,( .I)  ] 

= m,+~. m,(j+, j - ,  --m '+, - -m ' - l j  +, j-,  s', - m ' )  YT+ +" "'+(co+) Y,~--, "'-(co-) 

(22) 
s '  = j +  + j - , j +  + j - -  1 , . . .  l j  + - j - ]  

m' = -s ' , - - s '  + 1 . . . .  , s' - l , s '  
and we have 

++- 2 m+,m-,m" + - l ' t 7 m + , m - , m ' r  + co - )  ( J )  Zj+,j-,s" (co ,co ) =j+(j-+ + ~*.j+,~-,., ~co , 
j 3 + ' T m  m- m'r + -, ,  + 7 m  + m-  m'r + -~  - l . ~ j + , ' j - , s ,  I CO ,co  ) = m - z ~ j + , ' j - , '  s, I.o9 ~co ) 

S,Z~.m+ m- .,,~ + ...-~ = s ' ( s ' +  1 ) z j +  j - , r  (co ,co ) z ~ j + , j - , s  ~.co , t o  ) m+'m-'m" + - 

S t T l n + , t a - , m ' f  + - ~  . . A t 7 r n  + m -  m ' { .  ,+  . . - - '~  3 z " j + , j - , s "  ~.co ~co ) = l i t  l~ j+ , ' j - , "  s, ~to ~to ) 

Moreover (Dragt, 1965) 
m+j l n - ,  ln ' + -- P a d + , j - , s ,  (co ,co  ) =  [__l~ ,J++J--s '7m+,m- ,m' l . . .+ --~ k * }  z ~ j + , j - , s ,  I, t o  , c o  ) 

,.+.,~-,m" + - t_laf~++~--,<-z-,.+.-,.--,.,(co+,co-) (23) CZj+. j - .+ ,  (co ,co ) = ~ , j  "~j+.~-,s 

P and C being, respectively, the parity and charge conjugation operators. 
Now we can establish (Hillion & Vigier, 1959) the following theorem: 

I f  a set of  functions 7s+,  m- .,'. + -S , , ,~a+,j-,~ ~co ,co y, we fix the values o f j + , j  -, s ,  rn, 
the corresponding set transforms like the representation 

D ( j + , j  -)  ~ D ( j - , j  +) 

of the full Lorentz group. In other words, the functions of  this set constitute 
the basic frame of a finite-dimensional vector space transforming into itself 
under the Lorentz group according to the corresponding representation. 
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These spaces are, of course, subspaces of the general enumerably infinite 
dimensional Hilbert space containing all finite-dimensional representations 
of the full Lorentz group. 

For example, for spin �89 we have in the right-handed frame j + =  0, 
t 1 j -  = �89 s = ~, two Feynman-Gell-Mann two components spinors 

ZO,  I]2.1/2(,.~+ ,.~-'~ I [ v i i 2 ,  1]2/,.,-'~ [ 
~ r  0,1/2,112k W , w  ] 1 ~ 1 ~ 1 / 2  kw ] I 

7 0 , - 1 / 2 ,  1/2( ~+ ~-h[ V--1/2, 1/2(~.~-~] 
z-,O, i / 2 ,1 /2k~  ,v., ]l . t  1/2 k W ]J 

7 0 , - 1 / 2 ,  1/2( ,+ ..~-'~[ V - 1 / 2 ,  I /2[to-~[ 
a~ --z~0, 1]2,1/2kw , ~ ,  )1 - - J r  1/2 ~ :] (24) 

~ ' t ' r ~ [  7 0 , 1 / 2 , 1 / 2 [ . . ~ +  . . , -~  [ ~  v l / 2 , 1 / 2 ( . . - ' ~  I 
I L '0 ,1 /2  k ~  , w  ] l ~1 /2  k ~  ] I 

and similar expressions for r r and m' = --~. 
The quantisation is now straightforward. Clearly, the tou of the hydro- 

dynamic model corresponds to the projections on the body frame; that is, 
to the Sk' operators. J(J+ 1) are eigenvalues of S'kSk '. 

We thus write 

( 10t  1 0 t O t S , k S k , + ~ _ ~ )  (25) H =  - 2 m  0tt --2m 2c ~ 

in which (1/2m 2 c 2) S ,k Sk' can take two typical forms,'~ namely (Hara & Goto, 
1968) 

- - ~ S  = 2TI  S t2 

if the body is spherical, 

= + - ( s ; ) 2  

if the body has cylindrical symmetry. 
We quantise, as before, by introducing a total scalar field 

To, jm_-..~"( Y~). Z 8 ,~-.',,~'(to +, to - ) 
/ 

(26) 
with 

o, m-, m' f 7"0,"-, m'r ,.,-~ dto (27) Wo,j-,~' (Yz) = r "~ 0, J-,~' ~ ,~  , 

where dto is the volume element of the real part of the Euler angles. This 
implies that the ~00, j-, o'~- o"'(Y,~.) form, a two-components, spinor, transforming 
contragrediently to the Z~ j"-~'~," (to +, to-). Introducing (26) into (10), we see 
that they satisfy the Feynman-Gell-Mann equation: 

m 2 c  2 
O, m- ,  m p O~ m--t mt DWo,.i-,," ( Y,) = ~ 7"to,i-,~" ( Yu) 

~" Ins ide  the  particle,  space- t ime c u r v a t u r e  can  rise e n o r m o u s l y  so  tha t  g~k >> 1. T h u s  
the  ~'k' S 'k = S~'g~kS~ ' t e rms  are  deve loped  locally o n  d iagona l  covar ian t  ope ra to r s  so tha t  
in general S~' S '~ = aSk'Sk" + b(S3') 2, with a and b constants. 
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TABLE 1. m j  2 = m o  2 + a J  

27 

t ~  

�9 

,-& 

N o t e .  The symbol (?) denotes existing particles with undetermined spin values. 
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Figure 1. 

with 
(I)  m 2 = m o 2 + a j ( J + l )  (too and a are constants),  for  spherical 

symmet ry  

2 2 1 1 [1 1 ~ '2 
(1) m = mo + ~ J ( J +  1) + 2 ~I3 -- ~ )  m , for  cylindrical symmetry  
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/ / /  
/ 

I t I I I I l 
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29 

J 

9 -  

5 -  

1 -  
2 

0 

Y Y 

2 

I I I I f P [ 
1 2 3 4 5 6 7 m2lBeV) 2 

Figure 2. 

This generalisation of the Dirac equation can be extended for any even 
and odd spin. 

From the physical point of view, we shall discuss these two possibilities 
in connection with the observed baryon and boson mass spectra. 

(I) If one considers baryons as compound quasi free 3-quarks states, we 
know (Dragt, 1965) that in the non-relativistic limit, they move, in the rest 
frame, in a two-dimensional space like plane so that we can consider their 
compound droplet structure to have cylindrical symmetry. If we further 
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1 

TABLE 2. m j  2 = mo 2 + a J ( J +  1) 

1 2 

139 765 1320 

I a = 0 ' 2 8 - - 1  

t a = 0'29 J 

549 
L _ _  

970(?) 
a = 0"28 

720 1080 
[ a = 0"32 I 
I 

958 
I . _ _  

- - a  = 0.25 - -  

1016 
I 

l 

a = 0"30 

? 
a = 0"29 

1235 
I 

a = 0"28 

1410 
I 

1514 

I 

165o(?) 
i 

164o(?) 

1 

1060 
[ - - a  = 0.27 
L I 

1420 

494 
L a = 0"28 
I I 

1285(?) 
I 

a = 0 ' 2 7 . - -  

892 1420 
I 

a = 0'29 - 1  

1660(?) 

] 

3 

1880 

2100(?) 

2380 

�89 725(?) 1080(?) 
I a = 0'32 I 

I 

N o t e .  The symbol (?) denotes existing particles with undetermined spin values. 

a s s u m e  11 -~ I3 ( f l a t  d i s k )  a n d  m '  = s '  = J ,  w e  ge t ,  f o r  a s s o c i a t e d  p a r t i c l e s  
f o r  w h i c h  T, T 3 a n d  Y a r e  e q u a l ,  t h e  m a s s  f o r m u l a  

m 2 = mo z + a J  ( a  a n d  m0 = c o n s t a n t s )  (28)  

O f  c o u r s e ,  i t  is  a R e g g e - l i k e  f o r m u l a  o b t a i n e d  in  a d i f f e r e n t  w a y .  I t  c a n  
b e  c o m p a r e d w i t h  a b a r y o n  r e s o n a n c e s  t a b l e .  I n d e e d ,  i f  w e  c o n s t r u c t  a t a b l e  
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j j 

/ 

J = O  I ..... t I 
0 1 2 3 m2(BeV) 2 

J U + I )  

J = 2  

, /=1 

J = 0  
1 2 

F i g u r e  3. 

T I 
3 m=(BeV) 2 

where columns denote spin and lines correspond to associated experi- 
mental values of mass square, we get Table 1 which shows that a varies 
within very narrow limits. This can be further illustrated, if we plot as usual, 
m 2 versus J (Figs. 1 and 2), by quasi parallel lines connecting associated 
particles. Of course, a few resonant states remain outside and they could 
be considered as strongly bound baryon-boson states. Small deviations 
from ideal trajectories could be also explained by self energy contributions. 

(II) If we further consider bosons as baryon-antibaryon compound 
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states, we can assume tha t  a 6-quarks-ant iquarks  state corresponds to a 
c o m p o u n d  spherically symmetr ic  droplet  structure, so that  we get, for  mass  
formula  o f  associated particles, the following expression 

mj 2 = m02 + a J ( d +  1) (29) 

This also fits astonishingly well with observed resonance data. Indeed,  we 
get in this case Table  2, corresponding to Fig. 3. 

I f  we fur ther  assume (Depaqui t  & Vigier, 1969) that  bosons correspond 
to massive quan ta  emitted in b a r y o n - b a r y o n  quan tum jumps ,  we see the 
coefficient m0 and a in (29) results f rom the mo and a values in (28). In  
our  opinion,  the theoretical  advantage of  this model  is tha t  is explains both 
baryon  and boson  mass  spectrum J dependence in a simple way. I t  also 
paves  the way for  a physical  description of  the supplementary  quan tum 
numbers  (T, T3, Y, etc.) in terms o f  supplementary  internal fluid excitations 
which imply as we shall show in a subsequent  publicat ion (Gu6ret  & Vigier, 
1971), a simple modif icat ion of  (28) and (29), o f  the fo rm 

m 2 = m02(1 + A H )  + a J, m 2 = m02(1 + A H )  + a d ( J +  l) (30) 

A H  describing a T, T3, Y dependent  per turbat ions.  
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